
www.manaraa.com

Transactions of the SDPS:

Journal of Integrated Design and Process Science

18 (2), 2014, 77-95

DOI 10.3233/jid-2013-0014

http://www.sdpsnet.org

1092-0617/$27.50© 2014 - Society for Design and Process Science. All rights reserved. Published by IOS Press

yPBL: An Active, Collaborative and Project-Based

Learning Methodology in the Domain of Software

Engineering

Ernesto Expositoab*

a CNRS, LAAS, 7 avenue du Colonel Roche, F-31077 Toulouse, France
b Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France

Abstract Software engineers face the challenge of working in a very dynamic and rapidly evolving context requiring

the continuous acquisition of knowledge with new software technologies, paradigms, approaches and methodologies.

To address these needs, this paper proposes an active, collaborative and project-based learning methodology that is

well suited to the software engineering (SE) domain. The yPBL methodology is defined as a specialization of a SE

process named 2TUP or “y” that is mainly characterized by the separation of concerns between the requirements and

constraints of a software product and the technologies used during its design and development. This SE process has

been specialized to define project-based learning courses and the required activities allowing the research, discovery,

acquisition, transmission and application of knowledge by the learners following actively and collaboratively the

software product engineering process. The yPBL methodology can be applied to standard classroom courses as well

as to geographically distributed courses involving students and instructors as well as professionals that need to update

or acquire new SE knowledge. In this paper the yPBL methodology is formally specified using the Unified Modelling

Language (UML). This methodology is illustrated and evaluated by a case study involving students and instructors of

a classroom based software engineering and service-oriented computing course at the INSA Engineering School in

Toulouse, France.

Keywords: Software development process, problem/project based learning, software engineering process,

collaborative workspace, semantic web

1. Introduction

The Software Engineering (SE) domain involves complex software development processes demanding

from analysts, designers and developers a high level of knowledge and expertise in diverse areas including

project management skills, communication, design or development. Moreover, the large diversity of

software design and development approaches and paradigms as well as the accelerated development of new

software technologies requires continuous knowledge acquisition. This is not only the case for software

engineers professionals but also for academic instructors teaching software design and development courses.

The problem based learning (PBL) methodologies have been successfully used in different domains and

its benefits have been widely demonstrated (Biggs & Tang, 2011; Savery, 2006; Savery & Duffy, 1995).

This learning approach asks for the active participation of the students in the learning process, playing not

only the traditional role of passive and information consuming learners but also an active role through

 * Corresponding author. Email: ernesto.exposito@laas.fr

http://www.sdpsnet.org/
mailto:ernesto.exposito@laas.fr

www.manaraa.com

 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology 78

which part of the knowledge to be acquired needs to be discovered and applied by the students themselves

in the context of a given problem or project (Barron et al., 1998; Blumenfeld et al., 1991; Thomas, 2000),.

Moreover, the students may be asked to transmit the knowledge they have acquired to other students in

order to reinforce the learning process as well as to demonstrate that the learning objectives have been

achieved.

Although PBL has been designed to be easily adapted to any educational domain, the specificities of

software engineering courses need to be carefully considered in order to improve the benefits of this

learning method while applying successful processes and good practices that are specific to this domain.

As previously introduced, software engineering courses require the practical acquisition of a large amount

of knowledge and skills. Indeed, students need to efficiently exert in the area of project planning, quality

assurance, translation and traceability of customer requirements, analysis of the software context and

constraints, mapping of functional requirements to technical requirements, design of software solutions

following good and well-known practices (e.g. design patterns or object oriented approaches),

implementation of the designed solution, testing and continuous integration techniques and finally software

deployment and maintenance strategies, including the related documentation production. The previous list

is not exhaustive but shows the degree of complexity involved in designing courses allowing learners to

play and understand the challenges involved in the large spectrum of SE roles and facets. These courses

require a well-adapted learning methodology able to cope with this complexity while integrating an efficient

learning engineering process.

In the area of software engineering process, several methodologies have been proposed in order to

efficiently support members of development teams to design and implement software products. Unified

Process (UP) methodologies are very well known in the world of software engineering by providing an

efficient process based on an incremental and iterative sequence of phases (Jacobson et al., 1999). These

phases include analysis and specification of requirements, design of the software solution and

implementation, test, integration and deployment of the software product. Phases are planned and executed

in incremental iterations where in each increment new customer requirements can be added within the

process. Likewise, bugs detection and corrections as well as requirements change requests can be added in

each iteration. As agreed in the software management plan, stable or experimental software products can

be released at the end of the iterations.

UP has been specialised in new context-specific methodologies such as the Rational Unified Process or

RUP (Kroll & Kruchten, 2003), Enterprise Unified Process (Ambler et al., 2005) or the Agile Unified

Process (Ambler, 2002). Another interesting specialisation known as the Two Tracks Unified Process

(2TUP) has been proposed to face the reality of continuous changes of requirements and technologies that

represents an invariant reality in software engineering (Roques & Vallée, 2004). This process, also known

as the “y” process due to its graphical representation, proposes a differentiation of two tracks for the Unified

Process, the first (left) track represents the functional aspects related to the software product and the second

(right) track the technical aspects (e.g. technology, environment, platforms). This separation of concerns

helps software engineers to concentrate on discovering and specifying the requirements that need to be

satisfied (left track) while allowing them to explore and select the technologies that could be used to build

the software solutions (right track). Once the functional and technical requirements have been identified

and specified, both functional and technical tracks can be merged in order to produce the software design

specification. From this point, the software product can be developed, tested, integrated and deployed. This

sequence of parallel and serialised activities will be executed within the incremental and iterative process

proposed by the UP method. Benefits of this interesting methodology have been demonstrated by its

application in many industrial and research software projects.

This paper proposes a new learning methodology based on the well-known PBL approach and adapted

to software engineering processes by including a 2TUP process specialisation. This methodology, named

yPBL, aims at being applied to develop software engineering courses (classic classroom or modern

distributed online courses) put in the context of real software projects. The yPBL process maps the roles

to be played by the participants as well as the phases, activities and tasks considered in the PBL approach

into the roles and phases considered in the “y” process.

www.manaraa.com

79 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology

The rest of the paper is organised as follows. Section II introduces the methodology foundations related

to the software engineering domain. Section III presents the UML-based yPBL methodology specification.

The UML model describes the structural and behavioural aspects of the methodology including the

interactions between the different actors and the information exchanged during the learning, software

construction and evaluation process. Section IV presents the yPBL semantic data model guiding the active,

collaborative and project-based learning activities of the methodology. Section V describes a concrete study

case illustrating the use of yPBL in Software Engineering (SE) and Service Oriented Architectures (SOA)

courses at the INSA engineering school at Toulouse, France. Finally, several conclusions and perspectives

of this work are presented.

2. Methodology Foundations

In this section the main foundations of the yPBL methodology are introduced. The first sub-section

reviews the main standard of software engineering processes represented by the Unified Process. Secondly,

the description of the “y” or 2TUP process specialisation is presented. Finally, the main IEEE standards

driving the process, activities and documents in the software engineering discipline are introduced.

2.1. Software engineering process

A software process defines the steps required to create a software product as well as the artefacts that

are produced and consumed during the process. One of the most mature and well-known software

engineering process is the Unified Software Development Process, also known as UP or USDP process

(Jacobson, et al., 1999). UP was introduced as a standard process for creating software products based on

the use of the Unified Modelling Language (UML).

UP introduces the concept of 4Ps: people, project, product and process. People working in a software

development project collaborate within an adequate workflow based on the unified process using the

common UML notation in order to build and represent the blueprint of the software product. The process

includes all the activities needed to transform user's requirements into a software system. These activities

include project management, requirements specification, analysis, design, development and testing.

UP follows a component-based approach. This means that the software system being developed is based

on software components interconnected via well-defined interfaces. Likewise, object oriented design and

development approaches are followed within UP.

There are three major characteristics differentiating UP from other approaches:

o Use-case driven: the process is driven by the use cases or functionalities offered for each external

actor (i.e. clients or any external entity interacting with the system). It means that the process does

not consider functionalities that “might be good to have”, but it is driven by the realistic usages of

the system. In other words, use cases drive all the process phases: requirements, design,

implementation and test.

o Architecture centric: during the process the software architecture is constantly refined including

static and dynamic aspects of the system. It means that the form of the system is built

progressively.

o Iterative and incremental process: the transformation of user's requirements into the software

product is performed within an iterative and incremental process. During this process, the

functions and the form of the system are represented by the use cases and the architecture

respectively.

Various adaptations to the Unified Process (UP) have been proposed in the last years. These adaptations

are based on the kind of software system being developed, the organisation involved, competence levels of

development teams or the project size. Examples of these specialisations are Rational Unified Process

(RUP), Enterprise Unified Process (EUP) or Agile Unified Process (AUP). In general, most of the processes

used today for designing and developing software systems are commonly based in the principles proposed

by the UP process. This is also the case for the 2TUP process described in the next section.

www.manaraa.com

 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology 80

2.2. The “y” or 2TUP process

As previously introduced, the “y” Process or Two Tracks Unified Process (2TUP) has been proposed to

face the reality of the constant change of requirements and technologies of nowadays software systems

(Roques & Vallée, 2004). The “y” process is defined by two parallels tracks aimed at capturing functional

and technical requirements, followed by one common centralised development track (see Fig. 1).

Fig. 1. “y” or 2TUP process.

 This tracks-oriented structure helps software engineers to concentrate on discovering and specifying

the functional requirements that need to be satisfied (left track) while allowing them to explore and select

the technologies that could be used to build the software solutions (right track). Once the functional and

technical requirements have been identified and specified, both functional and technical tracks can be

merged in order to produce the software design specification. From this point, the software product can be

developed, tested, integrated and deployed. This sequence of parallel and serialised activities can be

executed within the incremental and iterative process proposed by the UP method.

Benefits of this interesting methodology have been demonstrated by its application in many industrial

and research software projects facing the invariant reality of continuous changes of requirements and

technologies. By separating the concerns between functional and technical requirements, engineers can

apply the same process to build or maintain a software product by integrating new requirements or

constraints and the most recent and well-adapted technologies.

2.3. Software engineering standards

Important efforts have been invested by the SE community to produce standards intended to drive and

document software engineering processes. The most widely used in industry and academy are the standards

proposed by the IEEE:

www.manaraa.com

81 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology

o Software Project Management Plan (SPMP): specifies the structure of software project management

plans that are applicable to any type or size of software project (Software Engineering Standards

Committee of the IEEE Computer Society, 1998c).

o Software Requirements Specification (SRS): specifies the structure and necessary qualities of

software requirements specification documents (Software Engineering Standards Committee of the

IEEE Computer Society, 1998d).

o Software Design Description (SDD): proposes the necessary information content and

recommendations for software design descriptions (Software Engineering Standards Committee of

the IEEE Computer Society, 1998b).

o Software Quality Assurance Plan (SQAP): specifies the format and content of software quality

assurance plans (Software Engineering Standards Committee of the IEEE Computer Society, 1998g).

o Software Configuration Management Plan (SCMP): describe the structure and content for a software

configuration management applying to the entire life cycle of the software (Software Engineering

Standards Committee of the IEEE Computer Society, 1998a).

o Software Test Documentation (STD): this document defines the form of a set of documents for use

in defined stages of software testing (Software Engineering Standards Committee of the IEEE

Computer Society, 1998e).

o Software Validation & Verification Plan (SVVP): specifies the structure of the validation and

verification plan including analysis, evaluation, review, inspection, assessment, and testing of

software products and processes (Software Engineering Standards Committee of the IEEE

Computer Society, 1998f).

o These standards help to express and communicate in a unified way all the information related to the

software process.

 A well-adapted software engineering learning methodology should integrate the previously introduced

software processes and standards in order to guarantee efficient learning objectives achievement while

actively and collaboratively building real software products. Next section introduces the yPBL

methodology process model.

3. yPBL Model

The yPBL is a learning methodology, based on the PBL model and inspired in software engineering

processes. As previously introduced, yPBL is aimed at being used in the context of software engineering

courses based on the construction of a real software product. The yPBL model is defined as a mapping

between the roles and phases considered in PBL methods into the roles, iterations and phases considered in

the “y” process (see Fig. 2).

As an intent to formally describe the yPBL methodology that will be presented in the following

paragraphs, the UML language has been used to specify the behavioural and structural views of the

methodology.

www.manaraa.com

 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology 82

Fig. 2 Overview of the yPBL methodology.

3.1. yPBL use cases

In order to follow the software engineering good practices introduced in the previous chapter, the unified

process has been used to model the yPBL methodology itself. As any unified process, the yPBL

methodology is use-case driven as illustrated in Fig. 3.

In this diagram the various actors interacting in order to achieve the learning objectives while

constructing a software product are depicted: students, instructors and the external client.

Guided by the construction of the software project, two generalisations of actor roles are proposed in

yPBL: coordinators and learners. The coordinator role is involved in the learning project management and

the learner in the learning activities.

Specialisations of the coordinator role are represented by the instructor coordinator and the student

coordinator roles. These actors play a supporting role for activities such as planning, scheduling and

resources allocation. They monitor and control the project in order to early detect potential problems and

work together to avoid them or to find well-adapted solutions. Specifically, the instructor coordinator actor

is the one interacting directly with the external client in order to study and validate the project to be used to

instantiate the methodology.

Generalisations of the learner role are defined by passive and active learner roles. Students and

instructors play these learner roles. Actually, they are internal actors of the real process and as a

consequence they are naturally involved in situations of passive and active learning. The active role is

played based on the collaborative production, refinement, dissemination and application of learning

material by instructors and students during the continuous learning process.

www.manaraa.com

83 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology

Fig. 3. yPBL methodology use cases diagram.

3.2. yPBL high level process

The yPBL method follows also the incremental and iterative process proposed by the Unified Process

as illustrated in the activity diagram presented in Fig. 4.

Fig. 4. Process proposed by the yPBL.

www.manaraa.com

 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology 84

At the high-level yPBL process, an initial start-up activity needs to be performed in order to prepare and

validate the overall software-learning project. Once the start-up activity is achieved, two parallel processes

represented by the y and the PBL process are performed. The y process itself concentrates in software

engineering activities. The PBL process targets the learning activities. During the overall yPBL process,

specific adaptations to the standards presented in the previous section and proposed to guide a software

project will be used to drive both y and PBL processes. The first standard is the Project Management Plan

(PMP). This document is an adaptation of IEEE 1058, IEEE 730 and IEEE 828 documents, and it is intended

to control and manage the yPBL process. As illustrated in Figure 4, the PMP document is used for each

iteration in order to control the project progress according the initial plan as well as to manage people,

resources and deliverables involved in each phase for both software and learning project processes. Several

iterations can be defined based on the complexity of the project and the duration of the course. These

iterations are mainly organised in four consecutive phases as recommended by the Rational Unified Process

(Kroll & Kruchten, 2003).

o Inception: short and initial phase aimed at understanding the business cases of the system to be

developed, initial overview of potential technologies to be used and to start the project management

activities (e.g. planning, resources or responsibilities). During this phase the requirements have to

be identified and validated.

o Elaboration: analysis of requirements and initial design of the potential solution, exploration and

evaluation of the technologies to be used, preparation of validation tests, global project management

activities and scheduling of software product releases. During this phase several iterations can be

planned in order to research and develop basic proofs of existing technologies that could be applied

to satisfy the project requirements. This work is actively and collaboratively developed, reviewed

and evaluated in the yPBL methodology based on the use of a learning instrument named cookbook,

which will be introduced in the next section.

o Construction: System architecture design, implementation and tests of functionalities and releases

of the product. During this phase, several iterations can be planned in order to release incremental

versions of the product. When following the yPBL methodology, the cookbooks elaborated during

the previous phase are used to design, develop and test the product releases.

o Transition: Maintenance and evolution of the system. This phase is started when the product has

been released in order to fix anomalies or to cope with new requirements or constraints. When the

yPBL methodology is applied, new cookbooks can be elaborated and used to produce new product

releases during the transition phase.

o Before the completion of an yPBL-based course, a final evaluation activity is carried out. During

this final activity, learners and coordinators participate in a global learning project evaluation

including not only the delivered software product and the satisfaction of the requirements but also

the efficiency of the process and the work carried out by all the participants. Results of these

evaluations are reported in the “Course Evaluation” deliverable.

3.3. yPBL detailed level process

The various activities illustrated in the yPBL process presented in the previous section will be further

detailed in this section. Specifications used to model internal yPBL activities are intended to describe the

workflow process. In these specifications the sequence of activities, interaction between the various process

actors, as well as communication channels are specified.

Figure 5 illustrates the start-up activity. This initial activity is performed as an interaction between the

client and the instructor-coordinator.

www.manaraa.com

85 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology

Fig. 5. Starting up process.

The start-up activity begins when the instructor-coordinator defines the course objectives from the

functional and technical point of view. Functional objectives are defined as abstract learning statements

aimed at expressing the basic and fundamental knowledge goals to be acquired by the learners.

Technological learning objectives are intended to express concrete statements based on current software

technologies to be used by the learners in order to apply the basic knowledge goals defined by the functional

objectives. The document called “Course Objectives” is used to collect these functional and technical

objective specifications. This document is communicated to potential clients in order to allow them to

propose an objective-compliant project. Clients are asked to propose an informal specification of the project

in the form of a “Project Proposal” that needs to be validated by the instructor-coordinator. If the project is

accepted it will be submitted to the rest of the yPBL process actors.

From this point and as illustrated by the high level yPBL process in Fig. 4, two parallel processes guiding

both software and learning project activities are started. Figure 6 illustrates the activity diagram modelling

the software project process. Students and instructors perform collaborative or individual activities for

every iteration of the y process. In order to stimulate autonomy, students are asked to work on the functional

and technical analysis phase of the project based on the “Project Proposal” submitted by the client. During

this phase, students need to interact with the client in order to clearly specify and validate the software

requirements and produce the SRS document (IEEE 830). Likewise, students are asked to work on the PMP

document in order to define the plan to be executed within a sequence of process iterations. Furthermore,

they are also asked to pay special attention in defining a realistic project plan based on the priorities of the

requirements expressed by the client.

www.manaraa.com

 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology 86

Fig. 6. 2TUP or y process.

During the design, development and testing activities, both students and instructors work together in

order to produce the deliverables expected to be released in every iteration. In these activities the role of

the instructor is clearly separated from the client role. Indeed, the instructor plays a supporting role (in

contrast to a classical teacher/evaluator role) intended to help the students to achieve the software project

objectives. During these activities, design and test-oriented documents are produced following the SDD

(IEEE 1016) and STD (IEEE 829) standards. Following the PMP plan and before the end of the iteration,

specific interactions need to be performed with the client in order to validate the “Product” release against

the software requirements expressed in the SRS.

In parallel to the y process, learning activities guided by the “Course Objectives” are carried out for

every iteration. Figure 7 depicts the activities performed by the coordinators, instructors and learners during

the PBL process.

www.manaraa.com

87 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology

Fig. 7. PBL process.

Actors performing the role of coordinator (i.e. instructor-coordinators or student-coordinators) perform

project coordination activities for every iteration. They work on the PMP document in order to facilitate

the project progress and anticipate actions aimed at minimising potential risks. Coordinators work together

on the basis of periodic meetings or using any asynchronous communication mean (e.g. email or forums).

During these interactions, coordinators exchange monitoring information collected during the process. This

information can be used to share and encourage positive experiences and good practices as well as to work

together in finding solutions to solve predicted or detected anomalies.

Likewise, instructors and learners work together in learning activities, which are naturally deduced from

the plan defined in the PMP. Indeed, because the project has been validated based on the course learning

objectives, the learning activities to be carried out in order to construct the software project can be directly

deduced from the PMP. This is particularly important to guarantee the achievement of the learning

objectives and this is another important benefit offered by the yPBL methodology. Students and instructors

work together to define and plan learning activities that are implicitly deduced from the software product

requirements and that need to be carried out in every iteration of the process. In order to efficiently carry

out these learning activities accordingly with the plan, both kind of actors need to participate in the research

and preparation of learning material. Instructors work together on the definition of a list of learning subjects.

These subjects will be prepared and presented by both students and instructors. In order to facilitate the

preparation of the learning material, bibliographic “Research Resources” need to be identified and proposed

by both actors. In order to guarantee that the learning material to be produced is compliant with the plan,

resources and project requirements, an approach based on the elaboration of predefined learning objects

named “Cookbooks” will be followed. “Cookbooks” are aimed at proposing an efficient presentation of

definitions and concepts (i.e. the ingredients), and how they can be applied to construct a particular software

function or service (i.e. the recipes). Recommended resources and links are also proposed in the cookbook.

Instructors and students carry out the preparation of the cookbooks and specific time slots are reserved to

allow them to produce and present these learning materials. The cookbooks are also stored in a common

www.manaraa.com

 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology 88

repository in order to facilitate its access during the project development process. These learning objects

and its semantic data model will be further explained in the next section.

The use of these learning objects represents another benefit offered by the yPBL methodology. Indeed,

internal actors play the roles of active and passive learners, working individually or within groups in

learning activities including bibliographic research, course preparation and presentation. Moreover, the

evaluation of these activities is carried out by the peers based on the real knowledge acquisition.

Furthermore, during the software building process, internal actors need to apply and reinforce this acquired

knowledge in constructing the software solution to be delivered at the end of the process.

Finally, for every PBL phase (i.e., inception, elaboration, construction and transition), review evaluation

activities are carried out based on the presentation of the PMP, SRS, SDD and STD documents. From these

documents the achievements can be objectively measured based on the requirements identification, solution

design and implementation, and the tests performed on the cookbook learning objects or the final product.

The last activity considered in the yPBL process is the final evaluation. This final evaluation activity is

carried out after the last process iteration. During this activity, all the process actors are asked to participate

in a final project presentation including the final version of the project documents as well as the delivery of

the final release of the project. During this activity, the functional and technical project requirements are

finally measured, as well as the global satisfaction of the internal and external yPBL process participants.

The process itself is discussed and a list of suggestions and remarks are collected and included in the

“Course Evaluation” document. This information is very helpful to improve the process for future projects

(i.e. best practices) and also to measure and compare the final results.

4. yPBL Semantic Data Model

In this section the yPBL semantic data model to be used for the collaborative knowledge searching,

production, dissemination and application will be introduced. In the framework of problem-based or

project-based courses, students generally work in groups on problems or projects which are close to

professional life: the situation must be realistic, credible and engaging for them. From the situation-problem,

the students must reflect on what precisely is entailed, what they know, and what they need to learn and do

to be able to provide a solution (Hmelo-Silver, 2004). The students’ progress through the project alternating

between individual work sessions and group sessions when they come together to pool what they have

learnt and move to the next step in finding the solution. Mechanisms are integrated whereby individual

students and the group can assess their progress in their learning and in completing the project.

As previous described (see Fig. 3), the main actors involved in yPBL courses are the instructors,

responsible for the course material provided to the participants, the students, the coordinators whose role is

to guide the activities carried out by the learners, and the ‘client’ who intervenes periodically to clarify

project requirements and constraints. The data model of a well-designed yPBL course plays a crucial role,

in particular to guarantee an efficient collaboration driven by the project requirements (and implicitly by

the learning objectives) and allowing the dynamic collaborative knowledge production and consumption

between all the participants.

During the yPBL course, the participants are grouped within teams working on the real software project

proposed by the external “client”. Each team is composed of learners, instructors and coordinators working

together and playing different roles during the process (project coordinator, software architect, software

developer, software tester, quality manager). The first task to be accomplished is to understand and if

necessary reformulate the specifications of the software that needs to be developed. Then, as a team, they

need to explore the different possible technical technologies that exist, learn how to use them and then

select the ones they will use when actually developing the software product.

As previously introduced, in order to facilitate these stages, yPBL uses a pedagogical object called

“cookbook”. Cookbooks are aimed at proposing an efficient collection of definitions and ingredients and

how they can be applied to construct specific software components, functions or services (i.e. the recipes)

that can be followed to satisfy the project requirements. Initial “root” cookbooks can be produced by the

instructors in order to give high-level overview of the involved technologies, methodologies, best-practices

www.manaraa.com

89 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology

and project-specific solutions and strategies. From these initial cookbooks, the project specific cookbooks

are produced in complete autonomy by students (in pairs) from documentary research based on the

functional and technical requirements of the project. Each cookbook is pre-published in the yPBL

collaborative workspace in order to be peer-reviewed and modified correspondingly before being published

to all the course participants in the yPBL cookbook repository. In this way, the cookbooks will be available

to all the participants during the design and development phases of the project. In the framework of yPBL

courses, public conferences are usually organised during the elaboration phase in order to allow the students

to present and demonstrate their cookbooks to the whole project team.

Throughout the project, yPBL places students in situations where they must assume an active role in

their learning when they need to acquire knowledge and skills themselves and subsequently apply what

they have learnt. With the cookbooks and conferences, peer instruction/learning is formalised. The students

are required to transmit the knowledge they have acquired to other students in order to reinforce the learning

process as well as to demonstrate that the learning objectives have been achieved. Figure 8 presents the

yPBL cookbook data model. All the cookbooks are organised by domains, including methodological (i.e.,

software engineering, service-oriented architectures, object-oriented design, etc.) or technological (i.e.,

mobile, multimedia, distributed, enterprise applications, etc.) domains.

Fig. 8. yPBL cookbook data model.

For each cookbook a set of recipes will be developed in order to demonstrate the feasibility of satisfying

functional and technical requirements, including specific ingredients and involving domain specific

definitions. Each recipe is developed as a set of steps that are described using multimedia elements

including text, pictures, videos, audio, etc. Recipes are developed as proofs of potential solutions and after

being reviewed and presented to the whole team, one subset of recipes will be selected and applied by all

the participants in order to implement the final software product.

www.manaraa.com

 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology 90

The yPBL cookbooks repositories used to provide the adequate collaborative workspace have to

implement this data model. Cookbooks repository implementations need to integrate an adequate

technology able to facilitate the collaboration and to guarantee that all the consumers and providers of the

cookbooks share the same semantic of definitions, ingredients and requirements. yPBL cookbooks

repositories can be designed to use technologies such as semantic wikis in order to provide a flexible way

to produce and consume content that can be annotated based on the yPBL data model. The open source

Semantic MediaWiki (SMW) extension has been efficiently evaluated to implement yPBL collaborative

workspaces. SMW is a free open source extension of Mediawiki (the wiki engine of Wikipedia) that is well-

suited for collaborative workspaces including the advantages of semantic web technologies. The content

collaboratively produced within SMW can be encoded using standard RDF (Klyne et al., 2004) and OWL

(McGuinness & Van Harmelen, 2004) languages. In such way, repository content can be consumed using

semantic browsing and queries features facilitating the research and the discovery of solutions by

participants that share the same semantic model of functional and technical requirements. In such way, each

yPBL-based course can take advantage of common cookbooks repositories that have been elaborated by

other teams working on other projects at the same time or during previous courses. The process of efficiently

exploring and using the cookbooks repositories can be considered as being part of the learning acquisition

and evaluation process, as the learners need to have a good understanding of the knowledge model that has

been semantically annotated within the cookbooks and recipes. Based on this exploration, they can decide

what to use, to adapt or to extend in order to implement the required solution. During the cookbooks

elaboration phase, the learners and coordinators will decide how to adapt existing recipes or to create new

recipes when the project requirements cannot be satisfied by the recipes that have been produced for other

projects. In this way, an even larger collaboration with previous, concurrent or future project-based learning

courses can be guaranteed by yPBL cookbook semantic-driven repositories.

5. Case Study

The yPBL methodology has been iteratively and incrementally designed based on the experimental

results obtained by applying PBL methodologies for software engineering projects in the INSA Toulouse

in France. During the last 5 years (2008-2012), the yPBL methodology has been experimentally applied to

software engineering and service oriented architectures courses.

In order to propose a dashboard interface following the methodology, an yPBL template course has been

defined to be used in the Moodle learning management system (Moodle, n. d.). This template is illustrated

in the Fig. 9.

This template is intended to facilitate the interaction between the various actors within the several phases

of the yPBL methodology. In the general section, information such as course goals, planning, participants,

links to the resources repositories as well as synchronous (e.g., audio/video conferencing or chat

components) and asynchronous (e.g., forum or messaging components) communication channels are

presented. The yPBL methodology section introduces various resources describing the yPBL methodology,

its process and document templates. The project section is intended to publish the specification of the

project and its requirements, as well as to present communication channels with the client. Finally, inception,

elaboration and construction phases will be incrementally enabled during the project progression and will

allow all the participants to produce and consume the various learning and software product deliverables.

www.manaraa.com

91 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology

Fig. 9. yBPL template for Moodle interface.

In order to measure the benefits of the yPBL methodology, a concrete study case based on a Software

Engineering (SE) and Service Oriented Architectures (SOA) courses is presented in the following

paragraphs. The estimation of actors participating each year within these courses is presented in the Table

1 (i.e. approximately 11 instructors and 72 students).

Table 1. Yearly estimation of actors participating in the SE&SOA course

Actor Description
Client IT Services company or academic (open source projects)
Instructors 4 Software engineering instructors

4 Software oriented architectures instructors

3 English instructors
Students 72 students of the 5th year of IT and networking engineering

(working in teams of 9-12 students)
Coordinators 1 instructor and 5-6 students
Learners 11 instructors and 72 students

During the last 5 years (2008-2012), the actors playing the role of clients and proposing the yPBL

projects have been represented by local industrials or academics. The projects proposed by the clients have

been generally intended to design and develop Web-based applications based on the composition and

orchestration of distributed web services.

The instructors participating in these courses are divided in 3 groups: software engineering, service-

oriented architecture and English instructors. The first group of instructors targets the software engineering

process and the second group targets the software technologies to be used to develop the software solution.

English instructors participate actively in the project, working with the students in the elaboration of the

documents in English versions. Moreover, English instructors supervise and guide the students in activities

aimed at writing and presenting the various cookbooks developed during the learning activities and related

to the project software requirements.

The students participating in the project are divided in two categories: IT and Networking engineering

students. Students work in teams of 9-12 students and each team can work on a complete system

development or on one specific sub-system of the global project.

www.manaraa.com

 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology 92

The group of coordinators is composed of 1 instructor and 5 or 6 students, one student-coordinator for

each team.

Finally, the learners groups are composed of all the students and the instructors. Indeed, instructors and

students collaboratively participate in the learning process, based on the requirements that need to be

satisfied by the project to be delivered to the external client. Each year, the project changes and usually new

challenges need to be targeted, in particular when new technologies or specific project contexts are

demanded by the clients.

Figure 10 illustrates the analysis of various surveys carried with the yPBL course participants. In this

study, the survey has asked the participants to evaluate the amount of knowledge and skills acquired during

the active and collaborative activities (cookbook production, reviewing and application to the project). The

subjective appreciation of the participants regarding the quality of the acquired knowledge and skills is also

analysed (e.g. superficial or deep/long lasting acquisition).

Fig. 10. yPBL participants survey results.

o Figure 10.a) illustrates the learners’ point of view about the high level of knowledge and skills

acquired during the collaborative process of cookbooks production.

o Figure 10.b) shows the learners point of view about the average level of knowledge and skills

acquired during the cookbooks review process.

o Figure 10.c) shows the high level results about deep and long-lasting quality acquisition of

knowledge and skills during the yPBL course.

www.manaraa.com

93 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology

The encouraging results obtained from the application of the yPBL methodologies can be considered as

highly satisfactory and well adapted to the active and dynamic software engineering domain and the new

generation of learners. Indeed, instructors and students consider as very positive the gained experience from

working in a real software project. Moreover, instructors remark the high motivation of the students,

particularly when they work collaboratively performing learning and teaching activities. Furthermore, even

if at the end of the project the full set of clients requirements are not always satisfied, students are able to

identify, explain and propose solutions to cope with the encountered difficulties. They claim to have

understood that living the process is the best way to know how to do things working and how to avoid in

the future making the same mistakes. Moreover, the use of modern collaborative workspaces motivates and

accelerates the learning process and allows to easily capitalise knowledge from one learner to another, from

one year to the next one.

Further studies will be carried out in order to analyse how the population that has participated in yPBL

courses evaluate the benefits of this methodology in developing their industry, research and academic

careers.

6. Conclusions and Perspectives

This paper has presented an innovative learning methodology, based on the well-known PBL approach

and inspired and adapted to software engineering unified processes. The yPBL model describing the use

cases driving the methodology as well as the various internal activities guiding the process has been

presented. This model has specified the relationship between the roles and phases considered in PBL

methods and the roles, iterations and phases considered in the Two Tracks Unified Process (2TUP) or "y"

methodology.

The yPBL methodology has been defined as a process where incremental and iterative phases are

performed and specific communication channels are established by means of standard documents and

learning objects in the framework of a real software project. Likewise, the yPBL cookbook semantic data

model intended to facilitate the dynamic collaboration among project-based learning course participants

has been presented. This semantic data model is intended to guide the consumption and production of

learning objects named cookbooks and based on the rational identification of functional and technical

requirements of the project. This yPBL cookbook semantic repository is not only intended to be used during

the course period, but also after, when experienced or expert students can keep collaborating with new

courses and can also keep learning new technologies or methodologies.

A case study illustrating how this methodology has been instantiated at INSA Toulouse has also been

presented. Motivating results have been obtained during the experimental application of yPBL. At the

moment of writing this paper, a new instantiation of the methodology has been started and a more important

set of measurements will be performed in order to better analyse and evaluate the benefits offered by yPBL.

Furthermore, new studies will be carried out in order to evaluate the yPBL methodology based on the point

of view of engineers and the professional development of their industry, research and academic careers.

Acknowledgments

The yPBL methodology has been successfully designed, implemented and experimented thanks to the

valuable and active participation and collaboration of the GEI and CSH departments at the INSA Toulouse,

including clients, instructors and students participating in yPBL projects. A special acknowledgment is due

to Anne Hernandez and her English teachers’ team for their valuable support and encouragement

throughout this project.

References

Ambler, S. (2002). Agile Modeling: Effective Practices for Extreme Programming and the Unified Process:

Wiley. com.

www.manaraa.com

 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology 94

Ambler, S., Nalbone, J., & Vizdos, M. (2005). Enterprise Unified Process, The: Extending the Rational

Unified Process: Prentice Hall Press.

Barron, B. J. S., Schwartz, D. L., Vye, N. J., Moore, A., Petrosino, A., Zech, L., & Bransford, J. D. (1998).

Doing with Understanding: Lessons from Research on Problem-and Project-Based Learning. Journal

of the Learning Sciences, 7(3-4), 271-311.

Biggs, J.& Tang, C. (2011). Teaching for Quality Learning at University: McGraw-Hill International.

Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991). Motivating

Project-Based Learning: Sustaining the Doing, Supporting the Learning. Educational psychologist,

26(3-4), 369-398.

Hmelo-Silver, C. E. (2004). Problem-Based Learning: What and How Do Students Learn? Educational

Psychology Review, 16(3), 235-266.

Jacobson, I., Booch, G., & Rumbaugh, J. E. (1999). The Unified Software Development Process-the

Complete Guide to the Unified Process from the Original Designers: Addison-Wesley.

Klyne, G., Carroll, J. J., & McBride, B. (2004). Resource Description Framework (Rdf): Concepts and

Abstract Syntax. W3C recommendation, 10.

Kroll, P.& Kruchten, P. (2003). The Rational Unified Process Made Easy: A Practitioner's Guide to the

Rup: Addison-Wesley Professional.

McGuinness, D. L.& Van Harmelen, F. (2004). Owl Web Ontology Language Overview. W3C

recommendation, 10(2004-03), 10.

Moodle. (n. d.). Moodle Learning Management System, August 09, 2013, from https://moodle.org

Roques, P.& Vallée, F. (2004). Uml 2 En Action: De L'analyse Des Besoins À La Conception J2ee (Vol.

3): Eyrolles.

Savery, J. R. (2006). Overview of Problem-Based Learning: Definitions and Distinctions. Interdisciplinary

Journal of Problem-based Learning, 1(1).

Savery, J. R.& Duffy, T. M. (1995). Problem Based Learning: An Instructional Model and Its Constructivist

Framework. Educational technology, 35(5), 31-38.

Software Engineering Standards Committee of the IEEE Computer Society. (1998a). Ieee Recommended

Practice for Software Configuration Management Plans (Vol. 828): IEEE.

Software Engineering Standards Committee of the IEEE Computer Society. (1998b). Ieee Recommended

Practice for Software Design Descriptions (Vol. 1016): IEEE.

Software Engineering Standards Committee of the IEEE Computer Society. (1998c). Ieee Recommended

Practice for Software Project Management Plan (Vol. 1058): IEEE.

Software Engineering Standards Committee of the IEEE Computer Society. (1998d). Ieee Recommended

Practice for Software Requirements Specifications (Vol. 830): IEEE.

Software Engineering Standards Committee of the IEEE Computer Society. (1998e). Ieee Recommended

Practice for Software Test Documentation (Vol. 829): IEEE.

Software Engineering Standards Committee of the IEEE Computer Society. (1998f). Ieee Recommended

Practice for Software Verification and Validation Plan (Vol. 1012): IEEE.

Software Engineering Standards Committee of the IEEE Computer Society. (1998g). Ieee Standards for

Software Quality Assurance Plans (Vol. 730): IEEE.

Thomas, J. W. (2000). A Review of Research on Project-Based Learning.

www.manaraa.com

95 Exposito / yPBL: An Active, Collaborative and Project-Based Learning Methodology

Author Biography

Ernesto Exposito is an Associate Professor at the INSA of Toulouse and he is researcher in the SARA

team (Services et Architectures pour les Réseaux Avancés) at LAAS-CNRS, France. In 2004, he worked

as Researcher in the National ICT Australia Limited (NICTA) research center in Sydney, Australia. In 2003,

he earned his PhD in computer science and networking from the Institut National Polytechnique de

Toulouse. In 2010, he earned his HDR post-doctoral degree (accreditation to supervise research) from the

Institut National Polytechnique de Toulouse.

His research interests include autonomic communication services aimed at satisfying the requirements

of new generation distributed applications in heterogeneous networked environments.

In the pedagogic domain, his interests includes active and collaborative learning approaches in software

engineering.

He is author of more than 80 publications including international journals, regular and invited

international conference papers, books and book chapters.

His home page is http://homepages.laas.fr/eexposit

http://homepages.laas.fr/eexposit

www.manaraa.com

Copyright of Journal of Integrated Design & Process Science is the property of IOS Press and
its content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.

